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Abstract:   
Introduction: 

Near-infrared spectroscopy (NIRS) is a non-invasive technique for measuring regional oxygen saturation. Because 
preterm infants are susceptible to brain injury secondary to immaturity of the central nervous system (CNS) and cerebral 
vasculature, there has been significant interest in using cerebral NIRS monitoring to predict and/or decrease the risk 
of brain injury.  
Methods: 
Preterm infants born at <32 weeks’ gestational age at high altitude were monitored with cerebral near-infrared 
spectroscopy (NIRS) throughout the first 96 postnatal hours.  Regional cerebral oxygen saturation (rcSO2) and cerebral 
fractional tissue oxygen extraction (cFOTE) were measured. Additionally, we evaluated for possible correlations 
between cerebral oxygenation and fraction of inspired oxygen (FiO2) received. 
Results: 
20 infants were studied, with a mean birth weight of 1124 grams and gestational age of 28 5/7 weeks. Median rcSO2 
was 73.5% on day of birth, 75.0% at 24-48hrs of age, and 73.0% at 48-72hrs and 72-96hrs of age. Median cFTOE was 
23.8% on day of birth, 18.8% at 24-48hrs of age, 21.5% at 48-72hrs of age, and 23.6% at 72-96hrs of age. These patterns 
of rcSO2 and cFTOE and the median values for rcSO2 are consistent with those obtained in the largest sample of 
preterm infants reported to date at sea level. FiO2 correlated positively with cerebral oxygen saturation (r=0.23, p<0.001 
for rcSO2) and inversely with cerebral oxygen extraction (r=-0.25, p<0.001 for cFTOE). 
Conclusion: 
Cerebral oxygenation at high altitude appears to be similar to that at low altitude in preterm infants in the first 4 postnatal 
days. Cerebral oxygenation appears to be influenced by FiO2 received. 
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1 
Introduction:  2 

Near-infrared spectroscopy (NIRS) is a non- 3 
invasive technique for measuring regional oxygen 4 
saturation. A sensor applied to the skin measures 5 
oxygen saturation at a depth of 1-2cm.1,2 Regional 6 
oxygen saturation (rcSO2), as measured by NIRS, 7 
reflects mainly venous oxygen saturation. When 8 
compared to contemporaneous peripheral arterial 9 
oxygen saturation (SpO2), rcSO2 can provide a 10 
measure of regional oxygen utilization, expressed as 11 
fractional tissue oxygen extraction (FTOE): (SpO2 – 12 
rSO2) / SpO2.3  13 

Because preterm infants are susceptible to 14 
brain injury secondary to immaturity of the central 15 
nervous system (CNS) and cerebral vasculature, there 16 
has been significant interest in using cerebral NIRS 17 
monitoring to predict and/or decrease the risk of 18 
injury. Studies have shown that low regional cerebral 19 
oxygen saturation and/or fluctuations in cerebral 20 
oxygenation are associated with higher risk of 21 
periventricular and intraventricular hemorrhage 22 
(PIVH), adverse neurodevelopmental outcomes, and 23 
death.4-7 Multiple trials have assessed the impact of 24 
guiding clinical management with cerebral NIRS 25 
monitoring on short-term outcomes of cerebral 26 
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hypoxia, death, and severe brain injury8-10; however, 27 
data on long-term neurodevelopment are still 28 
pending.11   29 

While reference values for rcSO2 have been 30 
reported from birth through 8 weeks of age in 31 
preterm infants12-24, it is unknown whether these 32 
values can be applied to neonates born at high 33 
altitude locations, as data have been obtained 34 
primarily at sea level.  Peripheral arterial oxygen 35 
saturation has previously been shown to be lower in 36 
well preterm and term neonates born at high altitude 37 
compared to those born at sea level.25-28 Furthermore, 38 
rcSO2 and cerebral fractional tissue oxygen extraction 39 
(cFTOE) were recently found to be lower in term 40 
neonates born at high altitude compared to those 41 
born at low altitude.29   42 

In the present study we measured rcSO2 and 43 
cFTOE using neonatal sensors during the first 96 44 
postnatal hours in preterm infants born at <32 weeks 45 
of gestation in a high-altitude location to obtain 46 
normative data. Additionally, we evaluated for 47 
possible correlations between cerebral oxygenation 48 
and fraction of inspired oxygen (FiO2) received. 49 
 50 
Methods: 51 

This study was approved by the University of 52 
New Mexico Health Sciences Center Institutional 53 
Review Board (IRB) prior to enrollment of 54 
participating infants (#20-382). 55 
 56 
Participants 57 

Participants in this observational study were 58 
recruited prospectively from the level-IV Neonatal 59 
Intensive Care Unit (NICU) at the University of New 60 
Mexico Hospital (altitude 5150 feet / 1570 meters 61 
above sea level) from August 2021 to December 2022 62 
Written parental consent was obtained for all 63 
participants. Eligible participants were <32 weeks’ 64 
gestational age at the time of delivery, and <24 hours 65 
of age. Infants were not eligible for participation if 66 
they had a known cardiac anomaly or other anomaly 67 
that could impair perfusion and blood flow, were 68 
born after placental abruption, or had concern for 69 
extreme blood loss immediately after birth.  70 

 71 
Instrument 72 

An INVOS cerebral / somatic oximeter 73 
monitor (INVOS model 5100C; Medtronic, 74 
Minneapolis, MN, USA) with a neonatal sensor 75 

(INVOS Cerebral/Somatic Oximetry Infant- 76 
Neonatal Sensor; Medtronic, Minneapolis, MN, 77 
USA) was used to measure regional cerebral oxygen 78 
saturation (rcSO2). 79 

 80 
Data Collection and Processing 81 

As soon as possible after delivery, a Mepitel 82 
One contact layer (Molnlycke; Goteborg, Sweden) 83 
was affixed directly to the skin on the right 84 
frontoparietal area, and the neonatal sensor (INVOS 85 
Cerebral/Somatic Oximetry Infant-Neonatal Sensor; 86 
Medtronic, Minneapolis, MN, USA) was placed on 87 
top. rcSO2 was recorded once per minute from time 88 
of sensor placement until infant reached 96 hours of 89 
age. Null values for rcSO2 were excluded, all other 90 
values for rcSO2 obtained through 96 hours of age 91 
were included for analysis. Standard physiologic 92 
measures, including peripheral oxygen saturation 93 
(SpO2), heart rate, mean arterial blood pressure via 94 
indwelling catheter (or oscillometric cuff if no 95 
indwelling catheter was present) were recorded with 96 
an Intellivue patient monitor (Philips Medizin 97 
Systeme, Boeblingen, Germany) and placed in the 98 
medical record per routine unit documentation. Time 99 
and date on the NIRS monitor were synchronized 100 
with the patient monitor at the time of NIRS monitor 101 
placement. Upon completion of NIRS monitoring, 102 
standard physiologic measures as above and fraction 103 
of inspired oxygen (FiO2) administered throughout 104 
the duration of NIRS monitoring were obtained from 105 
participant’s medical record. 106 

At time of enrollment, perinatal history and 107 
demographic data were collected from the medical 108 
record. At time of discharge or death, information on 109 
the neonatal course and outcomes were collected, 110 
including: type and length of respiratory support 111 
received, presence and grade of intraventricular 112 
hemorrhage according to the classification of Papile, 113 
et al.30, diagnosis of necrotizing enterocolitis (Bell’s 114 
stage IIa31 or higher), other medical complications, 115 
and length of stay.  116 

 117 
Statistical Analysis 118 

The cerebral regional oxygen saturation data 119 
were averaged for each infant across the study period 120 
and by post-natal day. We conducted a prospectively 121 
planned sub-analysis of the enrolled infants based on 122 
sex and gestational age (GA). Specifically, the infants 123 
were divided into the following GA groups: Group 1: 124 
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23 to ≤26 weeks’ gestation; Group 2: >26 weeks’ 125 
gestation to ≤29 weeks’ gestation; Group 3: >29 126 
weeks’ gestation to 31 6/7 weeks’ gestation. We 127 
tested for significant differences between sexes and 128 
among the three age groups. Birthweight and per 129 
infant mean heart rate across the observation period 130 
were summarized as mean and standard deviation. 131 
The relative cerebral fractional tissue oxygen 132 
extraction (cFTOE) was calculated using the 133 
following equation: (SpO2 – rcSOs)/SpO2. NIRS 134 
parameters (rcSO2 and cFTOE) were summarized as 135 
median and interquartile ranges.  136 

We conducted Levene’s and Shapiro-Wilk 137 
tests to confirm homogeneity of variances and 138 
normality for continuous variables, then compared 139 
age groups via one-way ANOVA followed by a post- 140 
hoc Dunn’s test for significant results and compared 141 
the sexes using t-tests. We analyzed NIRS parameters 142 
using Mann-Whitney U and Kruskal-Wallis tests. 143 
Spearman’s rank correlation coefficient was used to 144 
assess the pairwise associations among rcSO2, SpO2, 145 
cFTOE, heart rate, FiO2, birthweight, and 146 
gestational age. All analyses were done in R, version 147 
4.1.1 (R Core Team, 2021).32 We adjusted the p- 148 
values for multiplicity using the Benjamini-Hochberg 149 
method. 150 
 151 
Results: 152 

During the enrollment period, 63 infants 153 
were born at <32 weeks of gestation, of whom 21 154 
were consented for the study and 20 had NIRS 155 
monitoring conducted (see Figure 1). The mean 156 
gestational age was 28 5/7 weeks and mean birth 157 
weight was 1124 grams. Demographic and clinical 158 
outcome data are shown in Table 1.  All but one of 159 
the participants were on positive pressure respiratory 160 
support throughout the NIRS monitoring period, 161 
including mechanical ventilation, non-invasive 162 
positive pressure ventilation (NIPPV), and/or 163 
continuous positive airway pressure (CPAP). FiO2 164 
ranged from 0.21 to 1.0 with a median of 0.25 (IQR 165 
0.1). Median heart rate was 152 beats per minute 166 
(IQR 17) and median mean arterial blood pressure 167 
was 33 mmHg (IQR 9). Monitoring was started 168 
between 1-21 hours, with a median start time of 6 169 
hours (interquartile range, IQR, 11.5hrs) and ended 170 
at 96 hours in all but one participant. Equipment 171 
failure led to cessation of monitoring at 82 hours of 172 
age for that participant.  173 

Figure 1: Enrollment 174 

 175 
 176 
Table 1: Demographics 177 

 178 
 179 
Two other participants had interruptions in their 180 
monitoring secondary to equipment failure, lasting 19 181 
hours 48 minutes (from 9hrs 37 minutes to 29hrs 25 182 
minutes) and 15 hours 38 minutes (from 74 hours 38 183 
minutes to 90 hours 16 minutes). 184 

28.5 (2.4)

1124 (376)

1 (5)

7 (35)

7 (35)

19 (95)

12 (60)

4 (2)

7 (2)

8.5 (5.3)

10 (50)

5 (25)

14 (70)

1 (5)

1 (5)

6 (30)

2 (10)

2 (10)

2 (10)

2 (10)

0 (0)

3 (15)

3 (15)

77 (47)Length of stay, median (IQR)

PDA treatment received

Intraparenchymal hemorrhage

ROP requiring treatment

NEC

Early onset sepsis

Late onset sepsis

CPAP

HFNC

Died

IVH - grade I/II

IVH - grade III/IV

Demographics

Outcomes, n (%)

Respiratory support during NIRS monitoring, n (%)

wk = weeks, g = grams, SD = standard deviation, n = number, IQR = interquartile range, 

NIPPV = non-invasive positive pressure ventilation, CPAP = continuous positive airway 

pressure, HFNC = high flow nasal cannula, IVH = intraventricular hemorrhage, ROP = 

retinopathy of prematurity, NEC = necrotizing enterocolitis, PDA = patent ductus 

arteriosus

Gestational Age (wk), mean (SD)

Birth weight (g), mean (SD)

SGA, n (%)

Male, n (%)

Vaginal delivery, n (%)

Any prenatal steroids, n (%)

≥2 doses prenatal steroids, n (%)

1-min Apgar score, median (IQR)

5-min Apgar score, median (IQR)

CRIB II score, median (IQR)

Mechanical ventilation

NIPPV
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Results for rcSO2 and cFTOE are shown in 185 
Table 2.  Median rcSO2 and cFTOE did not differ 186 
between the days of monitoring (Figures 2 and 3 in 187 
supplemental), sexes, or different gestational age 188 
groups.  189 
 190 
Table 2: Regional oxygen saturation and cerebral 191 
fractional tissue oxygen extraction 192 

 193 
p = p-values are based on assessment of significant different 194 
using mixed effects models. rcSO2 = regional cerebral 195 
saturation, cFTOE = cerebral fractional tissue oxygen 196 
extraction, IQR = interquartile range 197 
 198 

There were no significant correlations 199 
between cerebral oxygenation parameters (rcSO2 and 200 
cFTOE) and FiO2, SpO2, or heart rate among the 201 
whole population. Significant negative correlations 202 
between FiO2 and birth weight (r=-0.78, p<0.001) 203 
and gestational age (r=-0.82, p<0.001) were noted. 204 
Analysis for correlation between FiO2 and cerebral 205 
oxygenation parameters within individuals showed a 206 
significant positive correlation with rcSO2 (r=0.23, 207 
p<0.001) and negative correlation with cFTOE (r=- 208 
0.25, p<0.001). 209 
 210 
Discussion:  211 

Use of normative values for cerebral 212 
oxygenation in preterm infants is complicated by 213 
multiple factors. Available data differ between 214 
machines and type of sensor (adult vs. neonatal), as 215 
well as the gestational age at birth and chronologic 216 
age of the infant being monitored.33,34 Thus, some 217 
have argued that only trends should be used, rather 218 
than the absolute values.1,35 On the other hand, 219 
clinical trials have been conducted aimed at achieving 220 
“normal” absolute values of cerebral oxygenation 221 
with use of targeted treatment algorithms for cerebral 222 
hypoxia and hyperoxia.8,10,11  223 

Regardless of desire to use cerebral oxygenation 224 
information for trend comparison or targeted 225 
treatment, a framework is needed for differentiating 226 
typical from atypical levels of rcSO2. The first several 227 
postnatal days in infants born at <32 weeks of 228 
gestation are of particular concern, as this is a high- 229 
risk period for cerebral injury. While multiple studies 230 
have published data from serial cerebral oxygenation 231 
measurements in this gestational age group and time 232 
period,16-22 they have been conducted primarily at 233 
altitudes near sea level, with the exception of the 234 
study by Chock, et al.22 in which 2 of 19 sites were 235 
>4000 feet (~1200 meters). Furthermore, only four 236 
of these studies used an INVOS monitor, as used in 237 
this study,18.20-22 and only two obtained data using 238 
neonatal sensors.21,22 One of these was a 2016 study 239 
conducted at sea level that reported data from the 240 
largest sample of preterm infants to date (n=999). 241 
Most of their data were obtained using adult sensors, 242 
but a subset of participants underwent simultaneous 243 
monitoring with a neonatal sensor and mathematical 244 
modelling was then conducted to obtain “neonatal 245 
sensor-equivalent” data. In our study, we found 246 
similar median values for cerebral oxygen rcSO2 to 247 
the “neonatal sensor-equivalent” values, which 248 
ranged approximately between 70-80%. 249 
Furthermore, we found a similar pattern of change in 250 
rcSO2 over time, with an increase in the median value 251 
between day of birth and 24-48 hours of age, 252 
followed by a subsequent decline; and a similar 253 
inverse parabolic pattern for cFTOE over the first 254 
several days.  255 

In contrast, the only other study to report 256 
cerebral oximetry data in preterm infants born at <32 257 
weeks of gestation obtained with INVOS monitors 258 
and neonatal sensors found that rcSO2 significantly 259 
decreased over time.22 Chock et al. collected 260 
continuous cerebral oximetry over the first postnatal 261 
week and did not find a parabolic change in rcSO2 in 262 
the first 72 hours, perhaps because infants were 263 
enrolled up to 48hrs and thus had fewer data for the 264 
first 2 postnatal days. The median rcSO2 in our 265 
population (73.5%, IQR 11) was higher than the 266 
mean rcSO2 reported in the Chock study (65 ± 16%). 267 
The fact that the Chock study measured rcSO2 268 
through postnatal day 7 and found that rcSO2 269 
significantly decreased over that time may account 270 
for some of the difference in the average values 271 
between the 2 studies. Similar to both the 272 
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Alderliesten21 and Chock22 studies, the rcSO2 273 
increased and cFTOE decreased with increasing 274 
gestational age.  275 

While we had hypothesized that rcSO2 would 276 
be lower in preterm infants at high altitude, our 277 
findings of similar rcSO2 values may be due to the 278 
use of supplemental oxygen to maintain desired 279 
peripheral oxygen saturation levels. Unfortunately, 280 
the Alderliesten and Chock studies21,22 do not report 281 
on FiO2 received by participants, so a comparison of 282 
this factor is not possible. However, it has been 283 
postulated that adjusting FiO2 will affect cerebral 284 
oxygenation. The SafeBoosC trials sought to 285 
minimize cerebral hyper- and hypoxia as determined 286 
by NIRS monitoring and their algorithm for 287 
responding to a low rcSO2 includes adjusting FiO2.36 288 
Arterial oxygen content, with peripheral oxygen 289 
saturation being its most common surrogate, has 290 
been cited as one of three physiological components 291 
that influence rcSO237 and in clinical practice, 292 
adjustment of FiO2 is commonly used to alter 293 
peripheral oxygen saturation.  294 

Studies have reported conflicting results in 295 
this regard, finding that adjusting FiO2 increased,38 296 
decreased,39 or had no effect40 on cerebral 297 
oxygenation. None of these studies specifically 298 
examined correlations between FiO2 and cerebral 299 
oxygenation. In our study, we found that FiO2 had a 300 
highly significant positive correlation with rcSO2 and 301 
negative correlation with cFTOE (p <0.001 for 302 
both). This has physiologic plausibility, as one would 303 
expect cerebral venous oxygen saturation to increase 304 
and brain oxygen utilization to decrease with 305 
increased oxygen delivery. 306 

In prior studies documenting decreased 307 
peripheral oxygen saturation in term and preterm 308 
infants at high altitude, those on supplemental 309 
oxygen were excluded.25-28 In the study that found 310 
lower rcSO2 and cFTOE in term infants born at high 311 
altitude, NIRS monitoring was conducted only in 312 
infants without respiratory support.29 Further studies 313 
are needed to elucidate the effects of FiO2 on 314 
cerebral oxygenation, particularly at high altitude 315 
locations. 316 

The strengths of this study include the 317 
enrollment of preterm infants at a high-altitude 318 
location, use of continuous cerebral oxygenation 319 
monitoring, use of a neonatal sensor to obtain data 320 
on cFTOE, and inclusion of analysis of correlations 321 

between FiO2 and cerebral oxygenation parameters. 322 
To our knowledge, there are no previously published 323 
studies on cerebral oxygenation values in preterm 324 
infants at high altitude. There are limited published 325 
data on normative values for cFTOE using neonatal 326 
sensors. Finally, several studies have examined 327 
interactions between FiO2 and cerebral oxygen, but 328 
statistical analyses of correlations were not 329 
conducted.  The limitations of our study include our 330 
small sample size, interruptions in monitoring in 331 
some participants, and a delay in initiation of 332 
monitoring after birth or resuscitation. 333 
 334 
Conclusion:  335 

We found that preterm infants who were 336 
born at <32 weeks of gestation at high altitude and 337 
received respiratory support to maintain targeted 338 
oxygen saturations had cerebral oxygenation similar 339 
to infants born at lower altitudes. This may be due, at 340 
least in part, to the use of supplemental oxygen to 341 
maintain normal peripheral oxygen saturation, but 342 
further study is needed on the effect of supplemental 343 
oxygen and respiratory support on cerebral 344 
oxygenation. More data are also needed on normative 345 
values for cFTOE using neonatal sensors, to evaluate 346 
for any potential effect of altitude on this 347 
measurement. 348 
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Supplemental:  606 
Figure 2: rcSO2 by day of life 607 

 608 
Median regional cerebral oxygen saturation rcSO2 by day of life 609 
 610 
Figure 3: cFTOE by day of life 611 
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Median cerebral fractional tissue oxygen extraction (cFTOE) 613 
by day of life 614 
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